CONSERVATION STRATEGY FOR CROP WILD RELATIVES AND WILD HARVESTED PLANTS IN PORTUGAL

Joana Magos Brehm, Nigel Maxted, Brian V. Ford-Lloyd, M. Amélia Martins-Loução

OBJECTIVES OF THIS PRESENTATION

- CWR and WHP, what are they?
- Why do we need a national CWR and WHP Strategy?
- Portuguese CWR and WHP as a case-study
- Conclusions and relevant points

CROP WILD RELATIVES (CWR)

Those species that are taxonomically / genetically related to crops to which they may contribute genes via traditional breeding and biotechnology

WILD SPECIES UNDER THE SAME GENUS AS CROP SPECIES

"A wild plant taxon that has an indirect use derived from its relatively close genetic relationship to a crop; this relationship is defined in terms of the CWR belonging to Gene Pools 1 or 2, or Taxon Groups 1 to 4 of the crop" (Maxted et al., 2006)

WILD HARVESTED PLANTS (WHP)

Plants traditionally **collected from the wild** primarily used by local people as a source of food, medicines, fibres, dyes, oils, poisons, used in magic and religious traditions...

- Ethnobotanical / traditional value
- Small scale economic value
- Potential economic value

WHY A NATIONAL CWR AND WHP STRATEGY?

- Unique national resources
- Becoming more threatened (human activities, climate change, etc)
 and therefore are suffering from genetic erosion

WHY A NATIONAL CWR AND WHP STRATEGY?

- Legislative requirement to conserve
- CWR and WHP require an integrated in situ / ex situ approach,
 best implemented via a National Strategy
- No single method of generation

PORTUGUESE CWR AND WHP: CASE-STUDY

MAIN QUESTIONS

What to conserve?

NATIONAL INVENTORY OF CWR and WHP

Which CWR and WHP are more important?

Where to implement national genetic reserves?

Where to target *ex situ* collections?

WHICH CWR AND WHP EXIST IN MAINLAND PORTUGAL?

PORTUGUESE CWR AND WHP INVENTORY

METHODOLOGY

(Magos Brehm et al., 2008)

2319 taxa
(122 families, 524 genera)

97% CWR

21% WHP

19% both CWR + WHP

- ~93% are native;
- ~ 6% are endemic to Portugal, 11 % are endemic to Iberian Peninsula;
- ~ 16% are threatened;
- Only 12% are currently conserved in Genebanks;
- Only 0.5% are actively conserved in situ;
- ~ 6% are under any kind of national/international legislation.

MAIN QUESTIONS

What to conserve?

√ NATIONAL INVENTORY OF CWR and WHP

Which CWR and WHP are more important?

PRIORITISE CWR and WHP AT NATIONAL LEVEL

Where to implement national genetic reserves?

Where to target *ex situ* collections?

WHICH SPECIES ARE MORE IMPORTANT TO CONSERVE?

ESTABLISHING CONSERVATION PRIORITIES FOR CWR AND WHP IN PORTUGAL

METHODOLOGY

SPECIES NAME	SPECIES NAME	
Allium pruinatum	Leuzea longifolia	
A. schmitzii	Narcissus fernandesii	
A. victorialis	N. scaberulus	
Daucus carota subsp. halophilus	Plantago algarbiensis 22 PRIORITY	4
Dianthus cintranus subsp. barbatus	P. almogravensis SPECIES	•
D. cintranus subsp. cintranus	Quercus canariensis	
D. laricifolius subsp. marizii	Trifolium arvense subsp. gracile	
Epilobium angustifolium	Ulex densus	
Festuca brigantina	Vicia bithynica	
F. henriquesii	V. onobrychioides	
Herniaria algarvica	V. orobus	

MAIN QUESTIONS

What to conserve?

√ NATIONAL INVENTORY OF

CWR and WHP

Which CWR and WHP are more important?

▼ PRIORITISE CWR and WHP AT NATIONAL LEVEL

Where to implement national genetic reserves?

ECOGEOGRAPHIC SURVEY
GAP ANALYSIS

Where to target *ex situ* collections?

GENETIC DIVERSITY STUDY

CLIMATE CHANGE MODELLING

WHERE TO IMPLEMENT GENETIC RESERVES? WHERE TO TARGET *EX SITU* COLLECTIONS?

ECOGEOGRAPHIC SURVEY

GAP ANALYSIS

GENETIC DIVERSITY

CLIMATE CHANGE MODELLING

METHODOLOGY

1 - Ecogeographic survey and gap analysis

 Mainly Portuguese and online herbaria and genebanks Species distribution

Species 'hotspots'

IN SITU AND EX SITU RECOMMENDATIONS
FOR PRIORITY CWR AND WHP TAXA

METHODOLOGY

2 - Genetic diversity

- undertaken for 5 taxa
- about 5-7 populations per species
- AFLP

3 - Species distribution prediction with climate change

- **Software:** Maxent v. 3.2.1 (maximum entropy model) (Phillips *et al.*, 2006)
- Current climate data: WorldClim v. 1.3 (Hijmans et al., 2005) (19 bioclimatic variables)
- Future climate scenario: Community Climate Model version 3 (CCM3)
 (Govindasamy et al. 2003)
 - $[CO_2 \text{ atm}] = 600 \text{ ppm}$ $2 \times [CO_2 \text{ atm}] \text{ of that of pre-industrial era}$
 - predicted to occur ~2100
- Measuring climate change:
 - # of grid cells of highly suitable areas and the extent of suitable area in both climate scenarios
 - identification of conservation areas more affected by climate change

IN SITU AND EX SITU RECOMMENDATIONS
FOR PRIORITY CWR AND WHP TAXA

1 - In situ recommendations

- 68% of priority species
 conserved (passively) in 3
 existing conservation areas
- Genetic reserves establishment needed for active conservation

MAIN RESULTS

IN SITU AND EX SITU RECOMMENDATIONS FOR PRIORITY CWR AND WHP TAXA

2 - Ex situ recommendations

Priority taxa **not represented** by seed accessions or present valid passport data

all species need to be sampled BUT which are PRIORITIES?

- More endangered and more negatively affected by climate change
 - Dianthus cintranus subsp. barbatus
 - D. cintranus subsp. cintranus
 - D. laricifolius subsp. marizii
 - Epilobium angustifolium
- Not included in the suggested reserves
 - Allium pruinatum (including A. pruinatum var. bulbiferum)
 - Herniaria algarvica

- Festuca brigantina
- Herniaria algarvica
- Leuzea longifolia
- Quercus canariensis
- Leuzea longifolia
- Quercus canariensis

CONCLUSIONS AND RELEVANT POINTS

- CWR and WHP are important resources for human nutrition and food security;
- They are under threat of habitat loss and climate change, and are often overlooked in conservation planning;
- There is an urgent need to develop conservation strategies at national level to conserve these resources;

CONCLUSIONS AND RELEVANT POINTS

- There is no single method of generating a National Strategy for the conservation of CWR and WHP: it depends on the information available and the priorities of each country;
- I have outlined the basic methodology used to make in situ and ex situ
 conservation recommendations for the conservation of the priority
 Portuguese CWR and WHP.

ACKNOWLEDGMENTS

- Shelagh Kell (University of Birmingham)
- Maria Scholten (University of Birmingham, UK)
- Eliseu Bettencourt
- Pedro Ivo Arriegas (ICNB, Portugal)
- António Flôr (PNSAC, Portugal)
- Fundação para a Ciência e Tecnologia (FCT, Portugal)
- all curators of herbaria and genebanks

.

REFERENCES

- Govindasamy, B., Duffy, P.B. and Coquard, J. (2003) High-resolution simulations of global climate, part 2: effects of increased greenhouse cases. Climate Dynamics, 21: 391-404.
- Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. and Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25: 1965-1978.
- Magos Brehm, J., Maxted, N., Ford-Lloyd, B.V. and Martins-Loução, M.A. (2008)
 National inventories of crop wild relatives and wild harvested plants: case-study for Portugal. Genetic Resources and Crop Evolution, 55: 779-796.
- Maxted, N., Ford-Lloyd, B.V., Jury, S.L., Kell, S.P. and Scholten, M.A. (2006) Towards a definition of a crop wild relative. Biodiversity and Conservation, 15 (8): 2673-2685.
- Phillips, S.J., Anderson, R.P. and Schapire, R.E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190: 231-259.

CONSERVATION STRATEGY FOR CROP WILD RELATIVES AND WILD HARVESTED PLANTS IN PORTUGAL

Joana Magos Brehm, Nigel Maxted, Brian V. Ford-Lloyd, M. Amélia Martins-Loução

