

Introduction to diversity analysis and its implications

 \longleftrightarrow

50 observations

Prediction of missing distribution (modelling)

Rarefaction

The rarefaction technique re-calculates the number of classes (species in this case) that would have been observed given <u>a number of observations that is</u> <u>specified by the user</u> (based on hypothetical subsampling)

User defined number of observations?	Final cell value	Number of cells	Final results
Too low (e.g. 5)	Max richness defined by defined number of observations (e.g. 5)	Many	Loss of information – loss of detail of final cell value
Too high (e.g. 15)	High	Only those cells with a number of observations above the selected number will be included (e.g. 15)	Loss of information – loss of cell value

Rarefaction

reduction to 3 observations

reduction to 10 observations

Applicability in case of limited number of observations?

Estimators of Richness

Chao 1 $S_1 = S_{OBS} + (a^2/2b)$ Chao 2 $S_{Chao2} = S_{obs} + \frac{Q_1^2}{2Q_2}$ Chao 1 Corrected $S_{Chao1} = S_{obs} + \frac{F_1^2}{2(F_2 + 1)} - \frac{F_1F_2}{2(F_2 + 1)^2}$

... (cf DIVA manual)

Applicability in case of limited number of observations?

Estimators of Richness

Chao 1 Corrected

50 observations

Shannon diversity

Quantitative data

- Range
- Range / Mean
- Standard deviation
- Coefficient of variance

Molecular data

- Observed allele number
- Heterozygocity (external software)
- Effective allele number (external software)

Alpha versus beta diversity

- **Alpha diversity** (*α*-diversity) is the biodiversity within a particular area, community or ecosystem and is usually expressed by the number of species (*i.e.*, species richness) in that ecosystem

-Beta diversity (β -diversity) is a measure of biodiversity which works by comparing the species diversity between ecosystems or along environmental gradients.

- **Gamma diversity** (γ-diversity) is a measure of the overall diversity for the different ecosystems within a region

Whittaker's measure

$$\beta = (S1 - c) + (S2 - c)$$
 $\beta = \frac{S}{\bar{\alpha}} \text{ or } \beta = \frac{S}{\bar{\alpha}} - 1$

 $\gamma = S1 + S2 - c$

Priority areas for in situ conservation?

Thanks