AN INTRODUCTION TO GEOGRAPHIC INFORMATION SYSTEMS (GIS)

Joana Magos Brehm¹, Ali Shehadeh²
¹Botanical Garden, National Museum of Natural History, University of Lisbon (Portugal)
²Genetic Resources Unit, ICARDA, (Syria)
Contents

- Definition and major components
- Types of queries a GIS can answer
- How does it work?
- Spatial features and attributes
- Data representation formats
- Coordinate systems
- Map projections
- What can be used for?
- The use of GIS in conservation
- Before starting a project in GIS
- Examples of software
 - DIVA-GIS
 - ArcGIS
What are GIS?

“GIS are integrated systems of computer hardware and software for the analysis and display of spatially distributed data”

Johnston (1998)
Types of queries a GIS can answer

Location:

WHAT exists here - what is at a particular location?
“What type of land use is at 41.95N, -8.25W?”

Condition:

WHERE are specific conditions
“Where does it rain 3000 mm per year?”

Trends:

WHAT HAS CHANGED (over time)
“How far has the population of a certain species receded in the past 20 years?”
Types of queries a GIS can answer

Patterns:

HOW are patterns related

“How does soil type influence the distribution of a particular species?”

Modeling:

WHAT IF ..?

“What would happen to a certain habitat if the climate warmed by 2 degrees?”
How does it work?

- Data are stored in **layers** of information
- Each layer = different types of information (soil type, rainfall, etc...)
- Layers combine to produce a map (when the spatial reference system is common)
Spatial analysis

Map overlay

Data modeling

Geostatistics

Cartographic modeling

Topological modeling

Geocoding

Others
Spatial modeling...

All phenomena in our environment cannot be observed at one time

Create a simplified representation of reality - model

A model is a way of describing something that cannot be directly observed
Spatial features and attributes

Two basic types of data are associated with GIS:

Spatial data: "where is it?"

Attribute data: "what is it?"
Spatial features

- Stored as x and y coordinates (= 2 columns of data)
- Give information on the location and shape of features and between geographical features e.g. proximity
Attribute data

- Descriptors of spatial data (nature and qualities of features)
- Stored in tabular format (tables) and linked to the spatial data by a common identifier
- Numbers or text (e.g. 2, 3; marsh; high/low)
Data representation formats

- Paper maps
- Aerial photography
Data representation formats

VECTOR FILES: have x and y coordinates, portray features as points, lines and polygons
Data representation formats

VECTOR FILES
Data representation formats

Digital remote sensing
(satellite images, etc.)

Computer models

Raster format
Data representation formats

RASTER FILES: portray features as a matrix of grid cells, one value per grid square
Vector versus Raster

VECTOR

Advantages
- Compact data structure for homogenous areas
- Efficient encoding of topology
- Better suited for map output

Disadvantages
- More complex data structure
- Cannot store image data (continuously varying)

Example: shapefiles (consists of at least three files: .shp, .shx, .dbf), CAD files

RASTER

Advantages
- Simple data structure
- Overlay operations are straightforward
- High spatial variability is efficiently represented
- Only raster can easily store image data (e.g. photos)

Disadvantages
- Data structure is not compact
- Map output can appear 'blocky'

Example: .jpg, .tif (image), .geotiff (georeferenced)
Coordinate systems

A reference system that uses a 3-dimensional spherical surface to determine locations on the Earth

Geographic: uses *latitude* and *longitude* coordinates (only along the equator the distance represented by one degree of longitude approximate the distance represented by one degree of latitude)

Projected: uses a mathematical conversion to transform 3D latitude and longitude coordinates to a 2D surface
Geographic coordinate systems
Map projections

A projection is a mathematical means of representing the 3-dimensional curved surface of the Earth to a 2-dimensional medium.

- Multiple types of projections which serve different purposes
- Designed to preserve different properties of the curved surface
- Any projection creates some degree of distortion (areas, distances, directions, combination of these)
The type of projection depends on:

1. Whether the surface projected onto is conical, cylindrical, or planar
2. The orientation of the cone, cylinder, or plane relative to the globe
3. Whether the lines of contact are tangent or secant
4. Which particular underlying ellipsoidal model of the Earth’s shape (called the *datum*) is used.
Map projections

WINKEL-TRIPEL
What can be used for?

- Scientific research
- Resources management
- Sustainable development
- Conservation planning
- Environmental impact assessment
- Urban planning
- Cartography
- Route planning
- Public health
- Crime mapping
- National defence
- Transportation
- etc.
The use of GIS in conservation

- Measure habitat distribution
- Map and predict species distribution
- Speculate about why some certain species occur in a particular habitat and not elsewhere
- Study ecological processes (e.g., determination of how microtopography affects the flowering success of different species)
- Evaluate the impact of human constructions on rare plant populations
The use of GIS in conservation

- Ecogeographic survey (e.g. map species distribution, GAP analysis)
- Field exploration (e.g. development of field aids, information on the best time to undertake field work)
- Design, management and monitoring in situ genetic reserves (e.g. analysing species richness, frequency, distribution and abundance of endangered species)
The use of GIS in conservation

- **Germplasm regeneration and evaluation** (e.g. climate data and distribution maps for pests, diseases, pollinators, and taxa can be overlaid in order to identify potential sites for regeneration; to determine the suitability of different sites for the evaluation of specific traits)

- **Use of genetic resources** (e.g. help to improve the quality of the location data associated with collections; help to identify interesting germplasm and reveal the genetic structure of the material being held in Genebanks).
Before starting a project in GIS...

- Keep it simple: start with simple data and software
- Read documentation: good manuals and online help available
- Use existing data
- Plan ahead: a GIS requires multiple steps which should be formulated in advance
- Keep good records
- Check results: determine if the results obtained from a GIS procedure are logical before continuing
- Consult with experts.
Software – some examples

GENERAL
- ArcGIS
- ARC/INFO
- CARIS
- GENASYS
- IDRISI
- GEOMEDIA
- MAPINFO

GENETIC RESOURCES
- DIVA-GIS
- Flora Map

OTHERS:
- Biomapper
DIVA-GIS

- Designed to be used for spatial analysis of data associated with genetic resources collection and it can be used in developing strategies for future collecting and in situ activities
DIVA-GIS

Spatial analysis:

- assign coordinates
- check for errors
- analyse point distribution and produce maps
- display the number of observations, the number of distinct classes of observations for an array of grid cells
- calculate statistics parameters for numerical variables
DIVA-GIS

Spatial analysis (cont.):

- calculate several diversity indices (Margalef, Mehhinick, Shannon, Simpson, Brillouin)
- predict potential species distribution given the climate of the locations where it was observed (BIOCLIM, DOMAIN)
- identify sets of grid cells that are complementary to each other (that captures a maximum amount of diversity in few cells as possible).
“ArcGIS is a scalable system of software for geographic data for every organization from an individual to a globally distributed network of people”

Environmental Systems Research Institute (ESRI)
ArcGIS

- ArcCatalog
- ArcMap
- ArcToolbox
ArcMap

- Creates, displays, queries and edits maps
- Performs many spatial analysis tasks.
ArcCatalog

- Manages geographic data
- Data can be copied, moved, deleted, and viewed before it is added to the map
- Metadata can either be read or created
- New shapefiles can be created.
ArcToolbox

Geoprocessing operations:
- import/export
- format conversion
- statistics
- spatial and 3D analyst tools
- etc....
Extensions

- **Spatial Analyst**: advanced spatial modelling and analysis tools
- **3D Analyst**: visualize and analyse surface data
- **Network Analyst**: network-based spatial analysis (e.g. routing, travel directions)
- **Geostatistical Analyst**: spatial data exploration and optimal surface generation
- And many more...
AN INTRODUCTION TO GEOGRAPHIC INFORMATION SYSTEMS (GIS)

Joana Magos Brehm¹, Ali Shehadeh²
¹Botanical Garden, National Museum of Natural History, University of Lisbon (Portugal)
²Genetic Resources Unit, ICARDA, (Syria)