Print this page

Publication Detail


ABSTRACT: Cañahua (Chenopodium pallidicaule Aellen) is a poorly studied, annual subsistence crop of the high Andes of South America. Its nutritional value (high in protein and mineral content) and ability to thrive in harsh climates make it an important regional food crop throughout the Andean region. The objectives of this study were to develop genetic markers and to quantify genetic diversity within cañahua. A set of 43 wild and cultivated cañahua genotypes and two related species (Chenopodium quinoa Willd. and Chenopodium petiolare Kunth) were evaluated for polymorphism using 192 microsatellite markers derived from random genomic cañahua sequences produced by 454 pyrosequencing of cañahua genomic DNA. Another 424 microsatellite markers from C. quinoa were also evaluated for cross-species amplification and polymorphism in cañahua. A total of 34 polymorphic microsatellite marker loci were identified which detected a total of 154 alleles with an average of 4.5 alleles per marker locus and an average heterozygosity value of 0.49. A cluster analysis, based on Nei genetic distance, clearly separated from wild cañahua genotypes from the cultivated genotypes. Within the cultivated genotypes, subclades were partitioned by AMOVA analysis into six model-based clusters, including a subclade consisting sole of erect morphotypes. The isolation by distance test displayed no significant correlation between geographic collection origin and genotypic data, suggesting that cañahua populations have moved extensively, presumably via ancient food exchange strategies among native peoples of the Andean region. The molecular markers reported here are a significant resource for ongoing efforts to characterize the extensive Bolivian and Peruvian cañahua germplasm banks, including the development of core germplasm collections needed to support emerging breeding programs.

Genetic Resources and Crop Evolution, doi: 10.1007/s10722-010-9615-z
Category: Genetic diversity
Authors: Vargas, A. et al.
Publication Year: 2010

Related links

Web Address of the page:

Links in this page